

Journal of Solid State Chemistry 169 (2002) 66-74

JOURNAL OF SOLID STATE CHEMISTRY

www.academicpress.com

Synthesis of orthorhombic $LiMnO_2$ by solid-phase reaction under steam atmosphere and a study of its heat and acid-treated phases

Ramesh Chitrakar,* Kohji Sakane, Aya Umeno, Shuji Kasaishi, Norio Takagi, and Kenta Ooi¹

Institute for Marine Resources and Environment, National Institute of Advanced Industrial Science & Technology, AIST-Shikoku, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan

Received 19 March 2002; received in revised form 5 June 2002; accepted 20 August 2002

Abstract

Low crystalline orthorhombic LiMnO₂ (*o*-LiMnO₂) samples were synthesized by reacting either γ -MnOOH or Mn₂O₃ with LiOH · H₂O in the solid phase under steam atmosphere at 120°C. In the closed system, the vapor arising from LiOH · H₂O may strengthen the reactivity of LiOH at the surface of MnOOH or Mn₂O₃ particles, which may enable slow diffusion of Li⁺ ions forming LiMnO₂. These samples were compared with crystalline *o*-LiMnO₂ prepared by a solid-state reaction method at 700°C in nitrogen gas. The powder X-ray diffraction patterns of low crystalline samples after heating at 400°C in air revealed the formation of a single phase of cubic Li_{1.6}Mn_{1.6}O₄, but the crystalline sample revealed a mixed phase of *o*-LiMnO₂ and LiMn₂O₄ after heating at 400°C in air. The Li⁺/H⁺ exchange in the Li_{1.6}Mn_{1.6}O₄ sample progressed topotactically, while maintaining the crystal structure and morphology of the precursor. But heat-treated crystalline *o*-LiMnO₂ showed a disproportionation reaction with dissolution of Mn²⁺ ions.

© 2002 Elsevier Science (USA). All rights reserved.

Keywords: Solid-phase reaction; Orthorhombic lithium manganese oxide; Morphology

1. Introduction

The interesting structural and physical properties of various manganese oxide compounds have prompted a variety of applications such as adsorbents, primary precursors for pillared materials, catalysts and rechargeable batteries [1–9]. There have been numerous studies made since Gummow et al. [10] proposed the Li–Mn–O ternary phase diagram including for example, the effect of the starting materials, synthesis temperature, Li/Mn ratio, manganese oxidation state, electrochemical properties, phase transition, local structure, etc. [11–13]. Recently, Paulsen and Dahn [14] also studied the phase diagram of Li–Mn–O spinel only in air at different temperatures. Besides the solid-state reaction method at high temperature, low-temperature methods such as hydrothermal reaction, sol–gel process, intercalation, ion exchange, etc. are also used for synthesizing various manganese oxide compounds. Among these, hydrothermal synthesis at low temperature is a powerful method for synthesizing novel compounds.

Although LiMn₂O₄ is the most widely studied in the Li-Mn-O phase diagram [10], increasing attention is also being paid to LiMnO₂ samples with different crystallographic forms. LiMnO₂ exists in three forms: orthorhombic (o-LiMnO₂, space group Pmnm), monoclinic (*m*-LiMnO₂, space group C2/m) and lithiated spinel with tetragonal structure (t-Li₂Mn₂O₄, space group $I4_1/amd$). The *o*-LiMnO₂ samples in the literature have been prepared by hydrothermal [15,16], reflux [17], microwave irradiation [18], and solid-state reaction [19] methods with different crystallite sizes and different morphologies depending on the starting manganese precursors. Also, o-LiMnO₂ samples with varying degrees of crystallographic disorder have been prepared [20–22]. The m-LiMnO₂ was obtained either by an ion exchange reaction from α -type NaMnO₂ synthesized in air [23-25] or by direct hydrothermal treatment of

^{*}Corresponding author. Fax: +81-87-869-3551.

E-mail address: chitrakar-ramesh@aist.go.jp (R. Chitrakar).

¹Also for correspondence.

 Mn_2O_3 with a mixed solution of KOH and LiOH at 220°C [26]. The *t*-Li₂Mn₂O₄ was prepared by refluxing the solid LiMn₂O₄ with an excess of LiI dissolved in acetonitrile [27]. These LiMnO₂ samples have all been studied in detail for their electrochemical properties.

We previously studied the lithium extraction/insertion reaction in $L_{1.6}Mn_{1.6}O_4$ obtained from thermal decomposition of low crystalline *o*-LiMnO₂, which was synthesized by the hydrothermal reaction method in aqueous phase [16]. Furthermore, we also synthesized *o*-LiMnO₂ by microwave-assisted hydrothermal method in the same phase [18]. These synthetic methods required a large excess of LiOH \cdot H₂O (Li/Mn > 7 in mole ratio). A pH-titration study showed that the proton-type sample has a lithium ion-sieve property and a high lithium uptake from seawater [17].

In the present study, we tried to obtain o-LiMnO₂ under a steam atmosphere at 120°C by directly reacting Mn-sources with LiOH · H₂O (Li/Mn = 1) in solid phase. The o-LiMnO₂ was also synthesized by a solidstate reaction at 700°C in nitrogen for a comparative study.

2. Experimental

2.1. Synthesis of o-LiMnO₂ samples

Low crystalline o-LiMnO₂ was prepared by mixing either 10.0 g of y-MnOOH (Toyo Soda Co., Japan) or 9.0 g Mn₂O₃ (obtained by calcination of chemical grade MnCO₃ at 800°C for 4 h in air) with 5.0 g of LiOH · H_2O (Li/Mn = 1 : 1.05 in atomic ratio) in Teflon-lined stainless-steel vessels (50 cm³) and autoclaved at 120°C for 1 day. After cooling to room temperature, the solid was dried at 60°C overnight. The obtained product (o-LiMnO₂) was then heated at 400° C for 4 h in air to obtain Li_{1.6}Mn_{1.6}O₄. The acid treatment of Li_{1.6}Mn_{1.6}O₄ was carried out batch-wise by stirring 1 g of the solid with 1 dm³ of 0.5 mol dm⁻³ HCl solution for 2 days. The acid-treated samples were filtered and washed with deionized water and air-dried. The samples were designated as LiMnO₂-1, Li₁₆Mn₁₆O₄-1 and $H_{16}Mn_{16}O_{4}-1$ (all derived from γ -MnOOH), and LiMnO₂-2, Li_{1.6}Mn_{1.6}O₄-2 and H_{1.6}Mn_{1.6}O₄-2 (all derived from Mn₂O₃).

Crystalline *o*-LiMnO₂ was synthesized as follows: a known amount of $Mn(CH_3COO)_2 \cdot 4H_2O$ was dissolved in methanol and the solution was evaporated to dryness. The dried powder was heated at 450°C for 4 h in air to obtain Mn_2O_3 . Mn_2O_3 powder was mixed with a slight excess of LiOH \cdot H₂O (added Li/Mn = 1.5 in atomic ratio), ground, calcined at 450°C for 2 h in nitrogen, and then the temperature was increased to 700°C and maintained for a further 3 h in nitrogen. After cooling to room temperature in the nitrogen atmosphere, the

solid was washed with distilled water to remove excess lithium and dried at 60°C overnight. The sample was designated as LiMnO₂-3. One part of this sample was then heated at 400°C and another sample at 600°C for 4 h in air and the heated samples were designated as LiMnO₂-3-400 and LiMnO₂-3-600, respectively.

2.2. Characterization

The X-ray diffraction (XRD) patterns were taken on a Rigaku-type RINT 1200 X-ray diffractometer with a graphite monochromator with CuK α radiation (λ = 1.5406). DTA-TG curves of materials were obtained on a MAC science thermal analyzer (System 001, 200 TG-DTA) at a heating rate of 10°C/min in air. Fourier transform infrared (FT-IR) spectra were recorded on a Perkin-Elmer System 2000 infrared spectrophotometer, using a KBr technique; 300 hundred scans were averaged with a nominal resolution of 4 cm⁻¹. The SEM photographs of various materials were taken on a Hitachi-type S-2460 N scanning electron microscope.

Chemical analysis of lithium and manganese was carried out by using atomic absorption spectroscopy. The mean oxidation state of manganese (Z_{Mn}) was determined by reducing the solid to Mn^{2+} ions with sodium oxalate solution in sulfuric acid solution and back titrating the excess sodium oxalate solution with standard potassium permanganate solution as described in the literature [28].

2.3. Uptake of lithium from LiCl-enriched seawater

The uptake of Li^+ from lithium-enriched seawater was determined by stirring 100 mg of acid-treated solids in 1 dm³ of seawater (Li^+ concentration: 5 mg dm⁻³) for 1 week at room temperature. After attainment of equilibrium, the Li^+ ion content in the supernatant solution was determined.

3. Results and discussion

3.1. Characterization of low crystalline o-LiMnO₂

We carried out a direct solid-phase reaction between Mn-precursor and LiOH \cdot H₂O at 120°C in a closed system. The lithium insertion reaction in γ -MnOOH was monitored by analyzing the Li/Mn ratio in the product at different intervals (Fig. 1). The reaction proceeded only after 4 h and it was complete at 24 h. All the other autoclave reactions were therefore carried out for 24 h. In the γ -MnOOH–LiOH \cdot H₂O system at 120°C and under 2 bars of pressure, the vapor arising from LiOH \cdot H₂O may strengthen the reactivity of LiOH at the surface of MnOOH particles, which may enable the slow diffusion of Li⁺ ions into MnOOH particles. The Li^+/H^+ exchange reaction may progress slowly to form LiMnO₂. In the Mn₂O₃-LiOH · H₂O system also, Mn₂O₃ particles change to LiMnO₂. The reaction was assumed to be a lithiation process since there are no lattice protons in Mn₂O₃. The analyzed Li/Mn molar ratios and Z_{Mn} values for the samples are given in Table 1. Although the Li/Mn starting ratio of 1 was effectively retained in the samples, the mean oxidation state of manganese was found to be slightly high. The calculated compositions closely approached the theoretical formula LiMnO₂.

An attempt to prepare LiMnO₂ samples by reacting γ -MnOOH or Mn₂O₃ with LiOH \cdot H₂O under an open atmosphere at 120°C was unsuccessful; the reaction did

Fig. 1. Li/Mn ratio in *o*-LiMnO₂ at different intervals. γ -MnOOH = 10.0 g, LiOH \cdot H₂O = 5.0 g, autoclave vessel = 50 cm³, Temp. = 120°C.

Table 1 Chemical compositions and lattice parameters of different materials

not progress at all. This indicates that the water vapor plays an important role in the formation of *o*-LiMnO₂.

The XRD patterns of LiMnO₂-1 and LiMnO₂-2 exhibited broad and ill-defined peaks as compared to the starting Mn-sources (Fig. 2). All the diffraction peaks could be indexed according to the space group Pmnm of the orthorhombic structure. The lattice parameters of the present samples were nearly the same as the sample reported in the literature (Table 1). The presence of peak broadening in both samples suggested the existence of structural disorders between Li and Mn sites. According to Croguennec et al. [21] the full-width at half-maximum (FWHM) of the (011) peak in the XRD patterns could be correlated with the density of the monoclinic stacking faults occurring in o-LiMnO₂. This approach was further applied to different o- $LiMnO_2$ samples by other researchers [29,30]. The FWHM of (011) peak at $2\theta = 24.8^{\circ}$ of 0.85° in the present samples (Fig. 2) corresponded to 4% stacking faults according to their analysis [21], suggesting that the present samples have a disordered orthorhombic structure. We applied a similar approach in a previous study [18]. The FT-IR spectrum of LiMnO₂-1 and LiMnO₂-2 are shown in Fig. 3; these two samples showed absorption bands at 3450 cm^{-1} , which could be assigned to the stretching vibration due to adsorbed water from atmosphere. y-MnOOH showed absorption band at 2677 cm⁻¹, probably due to O–H stretching vibration; this band disappeared after the reaction with LiOH · H_2O . This suggests that the low-temperature *o*-LiMnO₂ does not contain H in the bulk sample and the reaction between y-MnOOH and LiOH progresses by ionexchange-type reaction. Most of the bands in the lower

Sample	Li/Mn	H ₂ O/Mn	Z_{Mn}	Chemical composition	Present work	Literature cited
LiMnO ₂ -1	1.00		3.16	LiMnO _{2.10}	a = 2.81 Å b = 5.75 Å c = 4.57 Å	a = 2.80(5) Å b = 5.75(7) Å c = 4.57(2) Å
LiMnO ₂ -2	1.01		3.22	LiMnO _{2.11}	(Orthorhombic, <i>Pmnm</i>) a = 2.81 Å b = 5.75 Å a = 4.56 Å	(Ref. [19]) "
LiMnO ₂ -3	1.01		3.0	LiMnO ₂	c = 4.50 A a = 2.81 Å b = 5.75 Å c = 4.57 Å	,,
$Li_{1.6}Mn_{1.6}O_4-1$	1.01	_	3.95	$Li_{1.64}Mn_{1.61}O_4$	a = 8.14 Å (Cubic, <i>Fd3m</i>)	a = 8.14 Å (Ref. [16])
Li ₁₆ Mn ₁₆ O ₄ -2	1.00	_	3.95	$Li_{163}Mn_{161}O_4$	a = 8.13 Å	,,
LiMnO ₂ -3-400	1.01	—	Not determined	$LiMnO_2$ phase + traces $LiMn_2O_4$		—
$H_{1.6}Mn_{1.6}O_4-1$	0.07	0.51	3.99	$H_{1.62}Li_{0.11}Mn_{1.57}O_4$	a = 8.05 Å (Cubic, $Fd3m$)	$a = 8.05 \text{\AA}$ (Ref. [16])
H _{1.6} Mn _{1.6} O ₄ -2	0.03	0.52	3.98	H _{1.65} Li _{0.05} Mn _{1.58} O ₄	a = 8.05 Å	"
LiMnO ₂ -3-400(H)	0.21	0.24	Not determined	_	_	—

Fig. 2. XRD patterns of Mn precursors, o-LiMnO2 and H1.6Mn1.6O4 samples.

wave number region (below 800 cm^{-1}) were attributed to the vibrations of MnO₆ octahedra. Fig. 4 shows the SEM photographs of LiMnO₂-1 and LiMnO₂-2 with needle-shaped and spherical morphologies identical to their Mn precursors. The SEM results indicated that the morphology was unaffected by ion exchange or lithiation process.

3.2. Characterization of crystalline o-LiMnO₂

The XRD patterns of samples prepared by solid-state reaction at high temperature are shown in Fig. 5. LiMnO₂-3 was obtained as a crystalline material and all the peaks of the XRD pattern could be indexed to orthorhombic structure with nearly the same lattice parameters as the low crystalline samples (Table 1). The FWHM of (011) peak in Fig. 5 at $2\theta = 24.8^{\circ}$ was $<0.15^{\circ}$, which suggested that the sample has a wellordered orthorhombic structure with fewer stacking faults (1%), according to the analysis [21]. The o-LiMnO₂ samples with stacking faults less than 1% have also been prepared by other researchers, who concluded that the samples had a well-ordered orthorhombic structure [29,30]. The analyzed Li/Mn molar ratio was 1 with a Z_{Mn} value of 3 (Table 1). The FT-IR of LiMnO₂-3 showed bands at 598 and 484 cm⁻¹, which

could be assigned to Mn–O stretching vibrations (Fig. 3). The SEM images of the LiMnO₂-3 showed octahedron particles $2-3 \mu m$ in size, the morphology being different from the starting Mn-source (Fig. 4). From SEM observations, it was clear that the surface of the sample was smooth and homogeneous and crystal size was also larger as compared to LiMnO₂-1 and LiMnO₂-2.

3.3. Heat-treated samples

LiMnO₂-1 and LiMnO₂-2 were known to have stacking faults and thus possessed structural defects. The heat treatment of these samples at 400°C in air brought about the formation of Li_{1.6}Mn_{1.6}O₄ due to the oxidation of manganese from trivalent to tetravalent. Due to the structural defects of LiMnO₂, the particles were likely to have been sufficiently in contact with oxygen during the heat treatment in air. The thermal decomposition behaviors of these samples are shown in Fig. 6. The DTA-TG curve of LiMnO₂-1 showed an exothermic peak at 356°C with weight gain, and the weight loss and gain could be observed around 400°C and 500°C, respectively. The thermal decomposition temperature of LiMnO₂-2 was 335°C with weight gain after which there was a sudden weight decrease with rise

Fig. 3. FT-IR spectra of $LiMnO_2$ and its heat- and acid-treated samples.

in temperature till 420°C. The decomposition temperatures of o-LiMnO₂ samples prepared by the hydrothermal method [16] and microwave irradiation method [18] in aqueous phase were 380°C and 320°C, respectively. The difference in thermal decomposition of o-LiMnO₂ samples prepared by different methods might be due to differences in crystallinity. It was found that the peak intensities of the XRD patterns of the sample obtained by the hydrothermal method in aqueous phase were slightly higher than those of samples obtained by other methods. The sample with higher crystallinity would have a higher decomposition temperature. When the LiMnO₂ samples were heated at 400°C for 4 h in air, the weight gain was about 6%, which corresponded to the conversion from LiMnO_{2.1} to LiMnO_{2.5} (Li_{1.6}Mn_{1.6}O₄). The analyzed Li/Mn molar ratios were almost 1 with manganese mean oxidation of 3.96 (Table 1).

The XRD patterns of heat-treated samples are shown in Fig. 2 and all the peaks could be indexed according to the space group Fd3m of cubic structure with lattice parameter a = 8.14 Å (Table 1). Pure spinel-type lithium manganese oxides with Li/Mn molar ratios from 0.5 to 0.8 were synthesized by directly heating a mixture of MnCO₃ and Li₂CO₃ at 400°C in air, and a mixture of spinel-type and monoclinic-type LiMnO₃ was formed with Li/Mn > 1 at 400°C in air [31]. In the present study, we also tried to prepare Li_{1.6}Mn_{1.6}O₄ by heating a mixture of MnCO₃ and Li₂CO₃ with Li/Mn = 1 at 400°C in air, but the resultant heat-treated sample was a mixture of spinel type (Li_{1.33}Mn_{1.67}O₄) and Li₂MnO₃. This result suggests that direct synthesis of Li_{1.6}Mn_{1.6}O₄ by solid-state reaction is not possible.

The o-LiMnO₂ can be classified as a rock salt structure in which the Mn and Li ions form independent sheets of MnO₆ and LiO₆ octahedra that are arranged in corrugated (zig-zag) layers. Due to the manganese (d^4) electronic configuration, the oxygen octahera around Mn^{3+} in *o*-LiMnO₂ is quite asymmetric (Jahn Teller Deformation). The oxidation of o-LiMnO₂ leading to a more symmetrical manganese $Mn^{4+}(d^{3+})$ is rather likely to induce some structural rearrangement or even straightforward structural transition towards a higher symmetry. Transformation of the o-LiMnO₂ to the spinel-type lithium manganese oxide has been explained by different researchers [32-34]. The displacement of Mn atoms into neighboring vacant octahedral sites causes the displacement of the other Mn atoms. This transformation is caused by a displacement of 50% of the Mn atoms to generate the 3:1 ratio of Mn atoms in alternate layers between layers of cubic closed packed oxygen planes, which is required by the ideal $Li[Mn_2]O_4$. This normal spinel structure possesses the crystallographic space group Fd3m, where Li ions occupy 8atetrahedral sites and Mn ions occupy 16d octahedral sites in a cubic closed packed array of oxygen ions. We carried out Rietveld and TEM analyses for Li and Mn atoms distribution in Li_{1.6}Mn_{1.6}O₄. The Li_{1.6}Mn_{1.6}O₄ was found to be a lithium-rich cubic spinel where some of the Mn atoms were displaced by the Li atoms. The formula could be written as (Li)_{8a}[Li_{0.5}Mn_{1.5}]_{16d}O_{3.75} with excess Li and Mn atoms in 16d sites of spinel notation having oxygen deficiency. A paper on structural refinement of Li1.6Mn1.6O4 using Rietveld and TEM analyses is in progress for submission.

The FT-IR spectrum of $Li_{1.6}Mn_{1.6}O_4$ -1 and $Li_{1.6}Mn_{1.6}O_4$ -2 is shown in Fig. 3. Small bands at 1500 and 1442 cm⁻¹ were attributed to carbonate stretching vibration and 944 and 844 cm⁻¹ to carbonate lattice vibration. The bands (650 and 510 cm⁻¹) in the regions below 800 cm⁻¹ were shifted to a slightly higher wave number as compared to LiMnO₂ samples.

The DTA-TG curve of LiMnO₂-3 showed a small exothermic peak at 608°C with weight gain from 400°C till a constant weight was reached at 800°C (Fig. 6). This decomposition temperature was much higher than that

Fig. 4. SEM photographs of different samples.

of LiMnO₂-1 or LiMnO₂-2. The XRD pattern of LiMnO₂-3 heated at 400°C in air (LiMnO₂-3-400) still showed major peaks corresponding to *o*-LiMnO₂ with traces of LiMn₂O₄ (Fig. 5). The XRD patterns of LiMnO₂-3 heated at 600°C in air (LiMnO₂-3-600) showed peaks of monoclinic Li₂MnO₃ and spinel LiMn₂O₄ (Fig. 5). Crystalline *o*-LiMnO₂ is known to decompose to a mixture of Li₂MnO₃ with monoclinic phase and LiMn₂O₄ with spinel phase after heating at 500°C in air [33]. Attempts to prepare a single phase of cubic Li_{1.6}Mn_{1.6}O₄ by the heat treatment of LiMnO₂-3 were unsuccessful in the present study.

The FT-IR spectra of LiMnO₂-3-400 are shown in Fig. 3. A small band around 3400 cm^{-1} could be assigned to the stretching vibration of adsorbed water from the atmosphere. The two bands at 944 and 865 cm⁻¹ due to carbonate were also observed. The bands at 650 and 510 cm⁻¹ were due to Mn–O stretching vibrations; these two bands were shifted to a higher wave number as compared to LiMnO₂-3. The SEM image recorded for LiMnO₂-3 (Fig. 4), because thermal

decomposition of LiMnO₂-3 at 400°C in air leads to the formation of a mixture of LiMnO₂ and LiMn₂O₄. A mixture of the two oxides could be clearly seen in the LiMnO₂-3-400 sample showing large crystals of LiMnO₂ with small attached fibrous particles of LiMn₂O₄.

3.4. Acid-treated materials

Chemical analysis showed that 93% and 96% of the original lithium contents in $Li_{1.6}Mn_{1.6}O_{4}$ -1 and $Li_{1.6}Mn_{1.6}O_{4}$ -2, respectively, were extracted with a 0.5 mol dm⁻³ HCl solution, with little dissolution of Mn^{2+} ions (2%). These two samples with tetravalent manganese formed stable protonated sites according to the topotactic Li^+/H^+ exchange reaction without a disproportionation reaction and such acid-treated samples should act as lithium-selective adsorbents. The mean oxidation states of manganese in $H_{1.6}Mn_{1.6}O_{4}$ -1 and $H_{1.6}Mn_{1.6}O_{4}$ -2 were nearly equal to 4 (Table 1). The lattice proton content was evaluated by the weight loss between 100°C and 400°C in the TG curve, assuming the

Fig. 5. XRD patterns of crystalline o-LiMnO₂ and its heat- and acid-treated samples.

product to be β -MnO₂ at 400°C. The H₂O contents were nearly equal to the theoretical proton content calculated based on the Li⁺/H⁺ exchange reaction, suggesting that the H₂O contents corresponded to the number of lattice hydroxyl groups formed by the exchange reaction. Calculation of the chemical composition of the acidtreated samples showed the presence of small amount of un-reacted lithium as an impurity (Table 1).

The XRD patterns of $H_{1.6}Mn_{1.6}O_4$ -1 and $H_{1.6}Mn_{1.6}O_4$ -2 showed the preservation of the cubic structure with a slight decrease in the lattice constant of a = 8.05 Å, while the relative intensities of the peaks were almost the same as the precursor $Li_{1.6}Mn_{1.6}O_4$ (Fig. 2).

The DTA-TG curves of H_{1.6}Mn_{1.6}O₄-1 show two small endothermic peaks at 149°C and 195°C with weight loss, while $H_{1.6}Mn_{1.6}O_4$ -2 shows only one small endothermic peak at 192°C with weight loss (Fig. 6). The temperature $(195^{\circ}C)$, where the endothermic peaks were observed, was higher than the usual evaporation temperature of water (100°C); so these samples contained crystal water or lattice hydroxyl groups in a more ordered state, which was further confirmed from FT-IR results. The complete evaporation of these lattice hydroxyl groups was followed by the transformation from the cubic structure to β -MnO₂. The large endothermic peaks at 537°C and 531°C for both samples with weight loss were due to the transformation from β -MnO₂ to the more stable α -Mn₂O₃ phase accompanied by loss of oxygen.

Fig. 6. DTA-TG curves of different samples.

The FT-IR of $H_{1.6}Mn_{1.6}O_4$ -1 and $H_{1.6}Mn_{1.6}O_4$ -2 showed two distinct bands resolved at 3350 and 3394 cm⁻¹, which were due to the stretching vibration of hydroxyl groups (Fig. 3). These two bands were usually associated with the band at 910 cm⁻¹, which was due to lattice coupling vibration and suggested the presence of hydroxyl groups in a more ordered state. Similar results were also observed on crystalline sample obtained by acid treatment of spinel-type lithium manganese oxide [35]. The band at 1613 cm⁻¹ could be ascribed to the bending vibrations of the lattice –OH groups.

The acid treatment of LiMnO₂-3-400 led to a disproportionation-type reaction with Li⁺ extractability of 78 wt% and Mn^{2+} ion dissolution of 20 wt%. Chemical analysis showed that the Li/Mn mole ratio in aqueous phase after acid treatment was 2.1, which was close to the theoretical value (dissolved Li/dissolved Mn = 2) based on the disproportionation reaction of LiMnO₂ as follows:

$$\begin{split} \mathrm{LiMn(III)O_2} &+ 4x\mathrm{H^+} \rightarrow \mathrm{Li}_{3-2x}\mathrm{Mn(III)}_{3-2x}\mathrm{Mn(IV)}_x\mathrm{O}_{6-2x} \\ &+ x\mathrm{Mn^{2+}} + 2x\mathrm{Li^+} + 2x\mathrm{H_2O}. \end{split}$$

On the other hand, the Li^+ ion extractability from the $LiMnO_2$ -3-600 sample was only 55 wt% with 7 wt% dissolution of Mn^{2+} ions; the low Li^+ extractability was due to the presence of Li_2MnO_3 phase, as it was confirmed from the XRD patterns (Fig. 5). It is well known that the extraction of Li^+ from Li_2MnO_3 is very difficult by a similar acid treatment [36].

The DTA-TG curve of the acid-treated sample LiMnO₂-3-400(H) is shown in Fig. 6. There was a small endothermic peak at 228°C with weight loss. The weight loss continued until 500°C and no endothermic peak was observed around 530°C. The evaluated lattice proton content in LiMnO₂-3-400(H) sample was nearly 1/4 due the disproportionation reaction as compared to $H_{1.6}Mn_{1.6}O_4$ samples.

3.5. Li⁺ uptake from LiCl-enriched seawater

The Li⁺ uptake from LiCl-enriched seawater was investigated with acid-treated samples. The Li⁺ uptakes by $H_{1.6}Mn_{1.6}O_4-1$ and $H_{1.6}Mn_{1.6}O_4-2$ were 4.75 mmol/g (33 mg/g), while the uptake was less than 0.10 mmol/g by LiMnO₂-3-400(H). These results confirmed that adsorbents derived from low crystalline o-LiMnO₂ were highly selective for Li⁺ ions only, and were non-selective for alkali and alkaline earth metal ions in seawater. Chemical analysis revealed that the adsorbent derived from the highly crystalline o-LiMnO₂ sample contained 20% of the original Li⁺ ions after acid treatment, and the content of lattice protons was markedly smaller than the other $H_{1,6}Mn_{1,6}O_4$ samples,

resulting in the adsorbent showing a negligible amount of Li^+ ion uptake in seawater.

4. Conclusion

Low crystalline o-LiMnO₂ samples with structural defects were successfully prepared by a solid-phase reaction under steam atmosphere at 120°C. These samples after heat treatment at 400°C in air were easily converted to cubic Li_{1.6}Mn_{1.6}O₄. The acid-treated samples (H_{1.6}Mn_{1.6}O₄) showed lithium ion-sieve properties. Crystalline o-LiMnO2 consisted of well-ordered particles and was converted to a mixture of LiMnO2 and LiMn₂O₄ at 400°C in air and finally to a mixture of Li₂MnO₃ and LiMn₂O₄ at 600°C in air and their acidtreated samples did not have lithium ion-sieve properties. Synthetic conditions should be directed towards creating the structural defects in order to obtain lithiumion-selective adsorbents. The present technique can be presumably used to prepare other manganese oxides with different crystal structures.

References

- [1] M.M. Thackeray, Prog. Solid State Chem. 25 (1997) 1.
- [2] X.M. Shen, A. Clearfield, J. Solid State Chem. 64 (1986) 270.
- [3] K. Ooi, Y. Miyai, J. Sakakihara, Langmuir 7 (1991) 1167.
- [4] S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, Chem. Mater. 10 (1998) 2619.
- [5] R. Chen, P. Zavalij, M.S. Whittingham, Chem. Mater. 8 (1996) 1275.
- [6] S. Ching, P.F. Driscoll, K.S. Kieltyka, M.R. Marvel, S.L. Suib, Chem. Comm. (2001) 2486.
- [7] Z. Liu, K. Ooi, H. Kanoh, W. Tang, T. Tomida, Langmuir 16 (2000) 4156.
- [8] Q. Gao, O. Giraldo, W. Tong, S.L. Suib, Chem. Mater. 13 (2001) 778.
- [9] J. Kim, A. Manthiram, Nature 390 (1997) 265.
- [10] R.J. Gummow, A. De Kock, M.M. Thackeray, Solid State Ionics 69 (1994) 59.
- [11] C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, J.B. Goodenough, J. Solid State Chem. 123 (1996) 255.
- [12] Y.J. Lee, F. Wang, C.P. Grey, J. Am. Chem. Soc. 120 (1998) 12601.
- [13] B. Ammundsen, D.J. Jones, J. Rozière, G.R. Burns, Chem Mater. 8 (1996) 2799.
- [14] J.M. Paulsen, J.R. Dahn, Chem Mater. 11 (1999) 3065.
- [15] M. Tabuchi, K. Ado, C. Masquelier, I. Matsubara, H. Sakaebe, H. Kageyama, H. Kobayashi, R. Kanno, O. Nakamura, Solid State Ionics 89 (1996) 53.
- [16] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 12 (2000) 3151.
- [17] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (2001) 2054.
- [18] R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, J. Solid State Chem. 163 (2002) 1.
- [19] J.N. Reimers, E.W. Fuller, E. Rossen, J.R. Dahn, J. Electrochem. Soc. 140 (1993) 3396.

- [20] L. Croguennec, P. Deniard, R. Brec, P. Biensan, M. Broussely, Solid State Ionics 89 (1996) 127.
- [21] L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem. 7 (1997) 511.
- [22] L. Croguennec, P. Deniard, R. Brec, J. Electrochem. Soc. 144 (1997) 3323.
- [23] A.R. Armstrong, P.G. Bruce, Nature 381 (1996) 499.
- [24] G. Vitins, K. West, J. Electrochem. Soc. 144 (1997) 2587.
- [25] R. Chitrakar, H. Kanoh, Y.-S. Kim, Y. Miyai, K. Ooi, J. Solid State Chem. 160 (2001) 69.
- [26] M. Tabuchi, K. Ado, H. Kobayashi, H. Kageyama, J. Electrochem. Soc. 145 (1998) L49.
- [27] J.M. Tarascon, D. Guyomard, J. Electrochem. Soc. 138 (1991) 2864.
- [28] Japan Industrial Standard (JIS), M8233, 1969.

- [29] Y.-I. Jang, B. Huang, H. Wang, D.R. Sadoway, Y.-M. Chiang, J. Electrochem. Soc. 146 (1999) 3217.
- [30] Y.-M. Chiang, D.R. Sadoway, Y.-I. Jang, B. Huang, H. Wang, Electrochem. Solid-State Lett. 2 (1999) 107.
- [31] Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Langmuir 8 (1992) 1861.
- [32] R.J. Gummow, D.C. Liles, M.M. Thakeray, Mat. Res. Bull. 28 (1993) 1249.
- [33] W. Tang, H. Kanoh, K. Ooi, J. Solid State Chem. 142 (1999) 19.
- [34] Y.-M. Chiang, H. Wang, Y.-I. Jang, B. Huang, Chem. Mater. 13 (2001) 53.
- [35] B. Ammundsen, P.B. Aitchison, G.R. Burns, D.J. Jones, J. Rozière, Solid State Ionics 97 (1997) 269.
- [36] W. Tang, H. Kanoh, X. Yang, K. Ooi, Chem. Mater. 12 (2000) 3271.